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Impact Oscillators % ICDEA

» Many engineering systems involve vibrations and impacts.

Figure: Examples of simple impacting systems: (a) a bell, (b) a gear assembly, (c) an impact print
hammer. Picture taken from di Bernardo et al. (2008)

» Mechanical devices are often engineered with loose-fitting joints to accommodate thermal
expansion, and the dynamics of this often lead to impacts in the joint.
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Figure 1. The physical system. Fig.1 The physical model

(a) S-W. Shaw et al., 1983. (b) S.W. Shaw , 1985.
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(c) J. de Weger et al., 1996.



Literature Survey (the 2000's)

FIG. 1. Schematic diagram of the experimental rig [3].

(d) S. Banerjee et al., 2009.

(e) J. Ing et al., 2011.

(f) T. Witelski et al., 2014.
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Figure: Bifurcation diagram obtained from the paper by Pavlovskaia et al., 2010.
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Figure: Bifurcation diagram obtained from the paper by Pavlovskaia et al., 2010.

» Why does a stable period-two solution appear so close to grazing?



A linear oscillator with hard impacts

z=0

7->

b F cos(wt) block

wall

Figure: Equations: & + bi + z 4+ 1 = F cos(wt) and & — —rz whenever x = 0. The oscillator is
under-damped (0 < b < 2). Let F' be the primary bifurcation parameter and w be the second.




A linear oscillator with hard impacts % ICDEA

z=0

7->

b F cos(wt) block

wall

Figure: Equations: & + bi + z 4+ 1 = F cos(wt) and & — —rz whenever x = 0. The oscillator is
under-damped (0 < b < 2). Let F' be the primary bifurcation parameter and w be the second.

» If the block hits the wall with zero velocity, this is a grazing impact.

> A grazing bifurcation occurs when the limit cycle has a grazing impact.



Typical phase portrait and bifurcation diagram % ICDEA
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Grazing occurs at F' = Fypay(w), where Fypay(w) = /(1 — w?2)2 + b2w?.
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Figure: See Ivanov (1993), and Nordmark (2001).
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> Let y(t) = @(t) and z = (t — t,er) mod 2.
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instantaneous
velocity
reversal
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> Let y(t) = @(t) and z = (t — t,er) mod 2.
» Use y = 0 as the Poincaré section. The map: (z/,2') = P(x, z) where P = Pyiobal © Paisc-



Poincaré map % ICDEA

» For a parameter u € R,
X
Paale, i) = A |7 4 qu+ O(el+1z14140),

where A = DP,iba1(0,0;0), and g = BP%%’T"“(O, 0;0).
» The discontinuity map by Nordmark is given by

X
], z <0,
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Pdisc(xvz;ﬂ) = -~
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» Impacts are highly ‘destabilising’ pertaining to the square root singularity.

» Oscillations wth only one impact per period are the ones that are most ‘likey’ to be stable:
maximal periodic solutions (MPSs).

» For a period-p solution of our map P with one impact, the MPS is the fixed point of
Plobar © Paise, k-

» Since the MPS is smooth, standard numerical methods like Newton's method can be used
to follow fixed points while z > 0.

» We continue zeros of the function G = Pgﬁobal o Paise,r — 1.
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» However, Newton's method fails near grazing because Pyisc, g contains /z (if z < 0, the
method blows up!).
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» The function V' maps the Velocity Into Variation In Displacement.



Numerics @ ICDEA

» However, Newton's method fails near grazing because Pyisc, g contains /z (if z < 0, the
method blows up!).

> So instead we guess (y1,21), then compute (z9, 20), (y2,22), and (3, 23), and
(4, 24) = Pyl (w3, 233 p). Then let V(y1, 215 1) = (w4, 24) — (20, 20)-

instantaneous
velocity
reversal

» The function V' maps the Velocity Into Variation In Displacement.
» This function is smooth in a neighborhood of (y1,21) = (0,0).



One-parameter bifurcation diagrams ICDEA
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Resonance % ICDEA

» Branches of MPSs emanate from the grazing bifurcation, either to the left or the right, and
Nordmark (Nonlinearity, 2001) showed that this is determined by the values of 7 and ¢.



Resonance % ICDEA

» Branches of MPSs emanate from the grazing bifurcation, either to the left or the right, and
Nordmark (Nonlinearity, 2001) showed that this is determined by the values of 7 and ¢.

» Here )
7:267%’ cos (W€>, 5:6*277”’,
w

Figure: Division of the (7,0) plane.
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Resonance % ICDEA

» Resonance refers to a rational ratio between frequency £ and the forcing frequency w.
> Let a;; be the elements of the matrix A.
» The following lemma shows that codimension-two points occur for certain rational ratios

Lemma
For the linear impact oscillator,

i) forp=1, we have a1 2 = 0 if and only if 5 = Z, for some n € Z;

ii) forp>2, we have 7 = 21/3 cos <§) if and only if % =n = 5, for somen € Z



Asymptotics (p = 1)

Let n=w —w*. Forp=1let
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Asymptotics (p > 2) % ICDEA
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Two-parameter bifurcation diagram with asymptotics % ICDEA
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» We have shown that the oscillator has a stable period-two solution near grazing because it
is near resonance.

» We have come up with a way of circumventing the issue of numerical algorithms falling off
the side of square-root near grazing by using the VIVID function.

» We have also theoretically come up with matching asymptotics, unfolding the
codimension-two points.

» Future: More complete bifurcation diagram, other bifurcation curves.
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Thank you! Questions?



