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Impact Oscillators
▶ Many engineering systems involve vibrations and impacts.

Figure: Examples of simple impacting systems: (a) a bell, (b) a gear assembly, (c) an impact print
hammer. Picture taken from di Bernardo et al. (2008)

.
▶ Mechanical devices are often engineered with loose-fitting joints to accommodate thermal

expansion, and the dynamics of this often lead to impacts in the joint.
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An experimental example

Figure: Bifurcation diagram obtained from the paper by Pavlovskaia et al., 2010.

▶ Why does a stable period-two solution appear so close to grazing?
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A linear oscillator with hard impacts

x(t)

blockF cos(ωt)b

x = 0

wall

Figure: Equations: ẍ+ bẋ+ x+ 1 = F cos(ωt) and ẋ 7→ −rẋ whenever x = 0. The oscillator is
under-damped (0 < b < 2). Let F be the primary bifurcation parameter and ω be the second.

▶ If the block hits the wall with zero velocity, this is a grazing impact.
▶ A grazing bifurcation occurs when the limit cycle has a grazing impact.
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Typical phase portrait and bifurcation diagram

Grazing occurs at F = Fgraz(ω), where Fgraz(ω) =
√
(1− ω2)2 + b2ω2.



Two-parameter bifurcation diagram
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Figure: See Ivanov (1993), and Nordmark (2001).



Poincaré map

▶ Let y(t) = ẋ(t) and z = (t− tref) mod 2π
ω .

▶ Use y = 0 as the Poincaré section. The map: (x′, z′) = P (x, z) where P = Pglobal ◦ Pdisc.
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Poincaré map

▶ For a parameter µ ∈ R,

Pglobal(x, z;µ) = A

[
x
z

]
+ qµ+O((|x|+|z|+|µ|)2),

where A = DPglobal(0, 0; 0), and q =
∂Pglobal

∂µ (0, 0; 0).
▶ The discontinuity map by Nordmark is given by

Pdisc(x, z;µ) =



[
x

z

]
, x ≤ 0,

[
r2x+ Õ(3)

z −
√
2

ω (1 + r)
√
x+ Õ(2)

]
, x > 0.



Maximal Periodic Solutions

▶ Impacts are highly ‘destabilising’ pertaining to the square root singularity.

▶ Oscillations wth only one impact per period are the ones that are most ‘likey’ to be stable:
maximal periodic solutions (MPSs).

▶ For a period-p solution of our map P with one impact, the MPS is the fixed point of
P p
global ◦ Pdisc,R.

▶ Since the MPS is smooth, standard numerical methods like Newton’s method can be used
to follow fixed points while x > 0.

▶ We continue zeros of the function G = P p
global ◦ Pdisc,R − I.
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Numerics

▶ However, Newton’s method fails near grazing because Pdisc,R contains
√
x (if x < 0, the

method blows up!).

▶ So instead we guess (y1, z1), then compute (x0, z0), (y2, z2), and (x3, z3), and
(x4, z4) = P p

global(x3, z3;µ). Then let V (y1, z1;µ) = (x4, z4)− (x0, z0).

▶ The function V maps the Velocity Into Variation In Displacement.
▶ This function is smooth in a neighborhood of (y1, z1) = (0, 0).
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One-parameter bifurcation diagrams
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Resonance

▶ Branches of MPSs emanate from the grazing bifurcation, either to the left or the right, and
Nordmark (Nonlinearity, 2001) showed that this is determined by the values of τ and δ.

▶ Here

τ = 2e−
πb
ω cos

(
2πξ

ω

)
, δ = e−

2πb
ω .

Figure: Division of the (τ, δ) plane.
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Resonance

▶ Resonance refers to a rational ratio between frequency ξ and the forcing frequency ω.

▶ Let ai,j be the elements of the matrix A.
▶ The following lemma shows that codimension-two points occur for certain rational ratios

Lemma
For the linear impact oscillator,

i) for p = 1, we have a1,2 = 0 if and only if ξ
ω∗ = n

2
, for some n ∈ Z;

ii) for p ≥ 2, we have τ = 2
√
δ cos

(
π
p

)
if and only if ξ

ω∗ = n± 1
2p

, for some n ∈ Z
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Asymptotics (p = 1)

Let η = ω − ω∗. For p = 1 let

c±,1 = ∓
(
1 + ϕ2δp

)
+ a11ϕ

2 + a22 +
α2ℓ

(1− a22)γ
.

Then

g±,1(η) =
α2

(
da12

dη

)2

βγc±,1
η2 +O

(
η3
)
.



Asymptotics (p ≥ 2)

Let

c±,p = ∓
(
1 + ϕ2δp

)
−
√
δp

(
1 + ϕ2

)
+

α2ℓ(
1 +

√
δp
)
γ
.

Then

g+,p(η) =
α2a212p

2δp−2(δ − τ + 1) (κ′)
2

8 sin4
(

π
p

)(
1 +

√
δp
)2

βγc+,p

η2 +O
(
η3
)
,

g−,p(η) =
α2a212p

2δp−2(δ − τ + 1) (κ′)
2
(1− c+,p

2c−,p
)

4 sin4
(

π
p

)(
1 +

√
δp
)2

βγc−,p

η2 +O
(
η3
)
.



Two-parameter bifurcation diagram with asymptotics
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Conclusion

▶ We have shown that the oscillator has a stable period-two solution near grazing because it
is near resonance.

▶ We have come up with a way of circumventing the issue of numerical algorithms falling off
the side of square-root near grazing by using the VIVID function.

▶ We have also theoretically come up with matching asymptotics, unfolding the
codimension-two points.

▶ Future: More complete bifurcation diagram, other bifurcation curves.
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The End

Thank you! Questions?


