

Resonant grazing bifurcations in simple impacting systems

Indranil Ghosh and David J.W. Simpson

School of Mathematical and Computational Sciences Massey University, New Zealand

July 15, 2025

Impact Oscillators

▶ Many engineering systems involve vibrations and impacts.

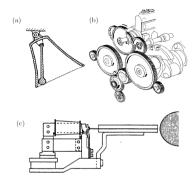


Figure: Examples of simple impacting systems: (a) a bell, (b) a gear assembly, (c) an impact print hammer. Picture taken from di Bernardo et al. (2008)

Mechanical devices are often engineered with loose-fitting joints to accommodate thermal expansion, and the dynamics of this often lead to impacts in the joint.

Literature Survey (the 80's & 90's)

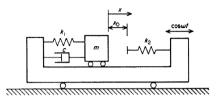
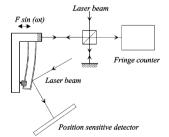
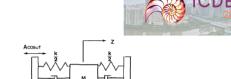


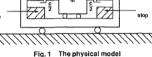
Figure 1. The physical system.

(a) S.W. Shaw et al., 1983.



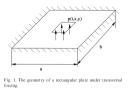
(c) J. de Weger et al., 1996.





(b) S.W. Shaw, 1985.

Literature Survey (the 2000's)



(a) J. Qiu and Z.C. Feng, 2000.

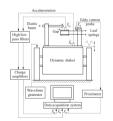
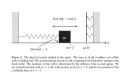
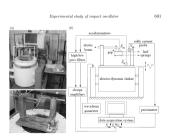


FIG. 1. Schematic diagram of the experimental rig [3].

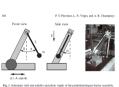
(d) S. Banerjee et al., 2009.



(b) J. Molenaar et al., 2001.



(e) J. Ing et al., 2011.



(c) P. T. Piiroinen et al., 2004.

(f) T. Witelski et al., 2014.

An experimental example

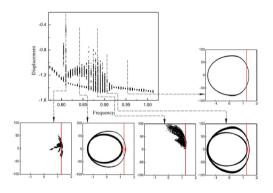


Figure: Bifurcation diagram obtained from the paper by Pavlovskaia et al., 2010.

An experimental example

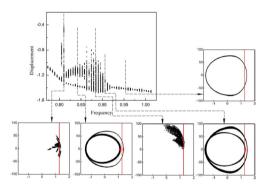


Figure: Bifurcation diagram obtained from the paper by Pavlovskaia et al., 2010.

▶ Why does a stable period-two solution appear so close to grazing?

A linear oscillator with hard impacts

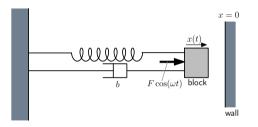


Figure: Equations: $\ddot{x} + b\dot{x} + x + 1 = F\cos(\omega t)$ and $\dot{x} \mapsto -r\dot{x}$ whenever x = 0. The oscillator is under-damped (0 < b < 2). Let F be the primary bifurcation parameter and ω be the second.

A linear oscillator with hard impacts

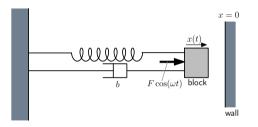
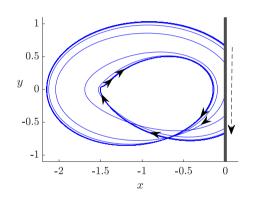
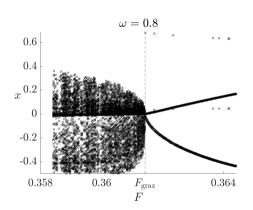


Figure: Equations: $\ddot{x} + b\dot{x} + x + 1 = F\cos(\omega t)$ and $\dot{x} \mapsto -r\dot{x}$ whenever x = 0. The oscillator is under-damped (0 < b < 2). Let F be the primary bifurcation parameter and ω be the second.

- ▶ If the block hits the wall with zero velocity, this is a *grazing* impact.
- A grazing bifurcation occurs when the limit cycle has a grazing impact.

Typical phase portrait and bifurcation diagram





Grazing occurs at $F=F_{\rm graz}(\omega)$, where $F_{\rm graz}(\omega)=\sqrt{(1-\omega^2)^2+b^2\omega^2}.$

Two-parameter bifurcation diagram

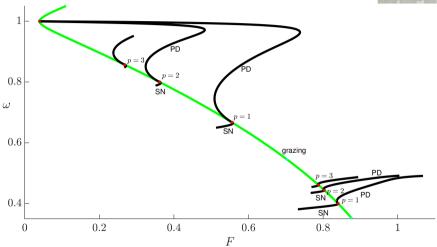
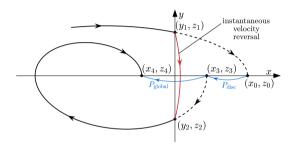


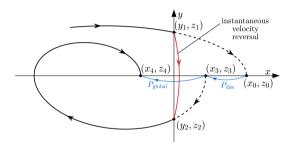
Figure: See Ivanov (1993), and Nordmark (2001).

Poincaré map



Let $y(t) = \dot{x}(t)$ and $z = (t - t_{\text{ref}}) \mod \frac{2\pi}{\omega}$.

Poincaré map



- Let $y(t) = \dot{x}(t)$ and $z = (t t_{ref}) \mod \frac{2\pi}{\omega}$.
- ▶ Use y=0 as the Poincaré section. The map: (x',z')=P(x,z) where $P=P_{\rm global}\circ P_{\rm disc}$.

Poincaré map

▶ For a parameter $\mu \in \mathbb{R}$,

$$P_{\text{global}}(x, z; \mu) = A \begin{bmatrix} x \\ z \end{bmatrix} + q\mu + \mathcal{O}((|x| + |z| + |\mu|)^2),$$

where $A = \mathrm{D}P_{\mathrm{global}}(0,0;0)$, and $q = \frac{\partial P_{\mathrm{global}}}{\partial \mu}(0,0;0)$.

► The discontinuity map by Nordmark is given by

$$P_{\text{disc}}(x, z; \mu) = \begin{cases} \begin{bmatrix} x \\ z \end{bmatrix}, & x \le 0, \\ \\ \begin{bmatrix} r^2x + \tilde{O}(3) \\ z - \frac{\sqrt{2}}{\omega}(1+r)\sqrt{x} + \tilde{O}(2) \end{bmatrix}, & x > 0. \end{cases}$$

Impacts are highly 'destabilising' pertaining to the square root singularity.

- ▶ Impacts are highly 'destabilising' pertaining to the square root singularity.
- Oscillations with only one impact per period are the ones that are most 'likey' to be stable: maximal periodic solutions (MPSs).

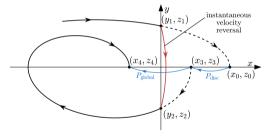
- Impacts are highly 'destabilising' pertaining to the square root singularity.
- Oscillations with only one impact per period are the ones that are most 'likey' to be stable: maximal periodic solutions (MPSs).
- For a period-p solution of our map P with one impact, the MPS is the fixed point of $P^p_{\text{global}} \circ P_{\text{disc},R}$.

- Impacts are highly 'destabilising' pertaining to the square root singularity.
- Oscillations with only one impact per period are the ones that are most 'likey' to be stable: maximal periodic solutions (MPSs).
- ▶ For a period-p solution of our map P with one impact, the MPS is the fixed point of $P^p_{\mathrm{global}} \circ P_{\mathrm{disc},R}$.
- Since the MPS is smooth, standard numerical methods like Newton's method can be used to follow fixed points while x>0.

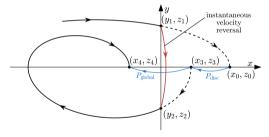
- Impacts are highly 'destabilising' pertaining to the square root singularity.
- Oscillations with only one impact per period are the ones that are most 'likey' to be stable: maximal periodic solutions (MPSs).
- ▶ For a period-p solution of our map P with one impact, the MPS is the fixed point of $P^p_{\mathrm{global}} \circ P_{\mathrm{disc},R}$.
- ightharpoonup Since the MPS is smooth, standard numerical methods like Newton's method can be used to follow fixed points while x>0.
- We continue zeros of the function $G = P_{\text{global}}^p \circ P_{\text{disc},R} I$.

▶ However, Newton's method fails near grazing because $P_{\mathrm{disc},R}$ contains \sqrt{x} (if x < 0, the method blows up!).

- ▶ However, Newton's method fails near grazing because $P_{\mathrm{disc},R}$ contains \sqrt{x} (if x < 0, the method blows up!).
- ▶ So instead we guess (y_1, z_1) , then compute (x_0, z_0) , (y_2, z_2) , and (x_3, z_3) , and $(x_4, z_4) = P^p_{\text{global}}(x_3, z_3; \mu)$. Then let $V(y_1, z_1; \mu) = (x_4, z_4) (x_0, z_0)$.

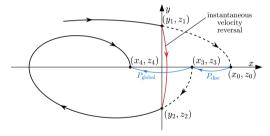


- ▶ However, Newton's method fails near grazing because $P_{\mathrm{disc},R}$ contains \sqrt{x} (if x < 0, the method blows up!).
- So instead we guess (y_1, z_1) , then compute (x_0, z_0) , (y_2, z_2) , and (x_3, z_3) , and $(x_4, z_4) = P_{\text{global}}^p(x_3, z_3; \mu)$. Then let $V(y_1, z_1; \mu) = (x_4, z_4) (x_0, z_0)$.



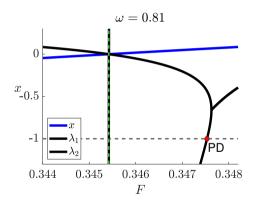
▶ The function V maps the **V**elocity Into **V**ariation In **D**isplacement.

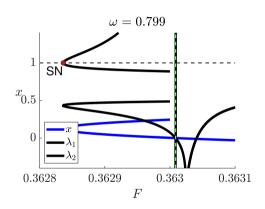
- ▶ However, Newton's method fails near grazing because $P_{\mathrm{disc},R}$ contains \sqrt{x} (if x < 0, the method blows up!).
- ▶ So instead we guess (y_1, z_1) , then compute (x_0, z_0) , (y_2, z_2) , and (x_3, z_3) , and $(x_4, z_4) = P^p_{\text{global}}(x_3, z_3; \mu)$. Then let $V(y_1, z_1; \mu) = (x_4, z_4) (x_0, z_0)$.



- ▶ The function V maps the **V**elocity Into **V**ariation In **D**isplacement.
- ▶ This function is smooth in a neighborhood of $(y_1, z_1) = (0, 0)$.

One-parameter bifurcation diagrams





Pranches of MPSs emanate from the grazing bifurcation, either to the left or the right, and Nordmark (*Nonlinearity*, 2001) showed that this is determined by the values of τ and δ .

- ▶ Branches of MPSs emanate from the grazing bifurcation, either to the left or the right, and Nordmark (*Nonlinearity*, 2001) showed that this is determined by the values of τ and δ .
- ► Here

$$\tau = 2e^{-\frac{\pi b}{\omega}}\cos\left(\frac{2\pi\xi}{\omega}\right), \qquad \delta = e^{-\frac{2\pi b}{\omega}}.$$

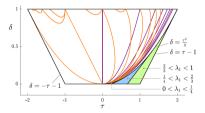


Figure: Division of the (τ, δ) plane.

 \blacktriangleright Resonance refers to a rational ratio between frequency ξ and the forcing frequency ω .

- \blacktriangleright Resonance refers to a rational ratio between frequency ξ and the forcing frequency ω .
- ▶ Let $a_{i,j}$ be the elements of the matrix A.

- **Proof** Resonance refers to a rational ratio between frequency ξ and the forcing frequency ω .
- Let $a_{i,j}$ be the elements of the matrix A.
- ▶ The following lemma shows that codimension-two points occur for certain rational ratios

- **Proof** Resonance refers to a rational ratio between frequency ξ and the forcing frequency ω .
- ▶ Let $a_{i,j}$ be the elements of the matrix A.
- ▶ The following lemma shows that codimension-two points occur for certain rational ratios

Lemma

For the linear impact oscillator,

- **Proof** Resonance refers to a rational ratio between frequency ξ and the forcing frequency ω .
- Let $a_{i,i}$ be the elements of the matrix A.
- The following lemma shows that codimension-two points occur for certain rational ratios

Lemma

For the linear impact oscillator,

i) for p=1, we have $a_{1,2}=0$ if and only if $\frac{\xi}{\omega^*}=\frac{n}{2}$, for some $n\in\mathbb{Z}$;

- **Proof** Resonance refers to a rational ratio between frequency ξ and the forcing frequency ω .
- Let $a_{i,i}$ be the elements of the matrix A.
- The following lemma shows that codimension-two points occur for certain rational ratios

Lemma

For the linear impact oscillator,

- i) for p=1, we have $a_{1,2}=0$ if and only if $\frac{\xi}{\omega^*}=\frac{n}{2}$, for some $n\in\mathbb{Z}$;
- ii) for $p\geq 2$, we have $au=2\sqrt{\delta}\cos\left(\frac{\pi}{p}\right)$ if and only if $\frac{\xi}{\omega^*}=n\pm\frac{1}{2p}$, for some $n\in\mathbb{Z}$

Asymptotics (p = 1)

Let $\eta = \omega - \omega^*$. For p = 1 let

$$c_{\pm,1} = \mp (1 + \phi^2 \delta^p) + a_{11}\phi^2 + a_{22} + \frac{\alpha^2 \ell}{(1 - a_{22})\gamma}.$$

Then

$$g_{\pm,1}(\eta) = rac{lpha^2 \left(rac{da_{12}}{d\eta}
ight)^2}{eta\gamma c_{\pm,1}} \, \eta^2 + \mathcal{O}\left(\eta^3
ight).$$

Asymptotics $(p \ge 2)$

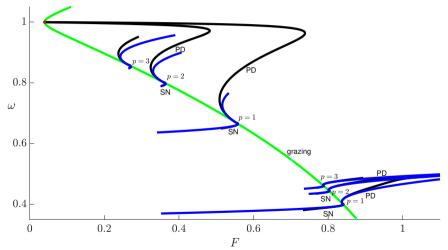
Let

$$c_{\pm,p} = \mp \left(1 + \phi^2 \delta^p\right) - \sqrt{\delta^p} \left(1 + \phi^2\right) + \frac{\alpha^2 \ell}{\left(1 + \sqrt{\delta^p}\right) \gamma}.$$

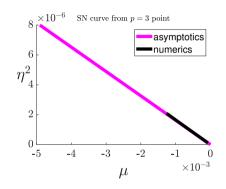
Then

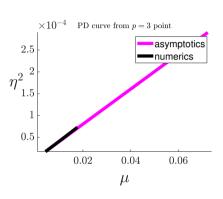
$$\begin{split} g_{+,p}(\eta) &= \frac{\alpha^2 a_{12}^2 p^2 \delta^{p-2} (\delta - \tau + 1) \left(\kappa'\right)^2}{8 \sin^4 \left(\frac{\pi}{p}\right) \left(1 + \sqrt{\delta^p}\right)^2 \beta \gamma c_{+,p}} \eta^2 + \mathcal{O}\left(\eta^3\right), \\ g_{-,p}(\eta) &= \frac{\alpha^2 a_{12}^2 p^2 \delta^{p-2} (\delta - \tau + 1) \left(\kappa'\right)^2 \left(1 - \frac{c_{+,p}}{2c_{-,p}}\right)}{4 \sin^4 \left(\frac{\pi}{p}\right) \left(1 + \sqrt{\delta^p}\right)^2 \beta \gamma c_{-,p}} \eta^2 + \mathcal{O}\left(\eta^3\right). \end{split}$$

Two-parameter bifurcation diagram with asymptotics



Two-parameter bifurcation diagram with asymptotics





▶ We have shown that the oscillator has a stable period-two solution near grazing because it is near resonance.

- ▶ We have shown that the oscillator has a stable period-two solution near grazing because it is near resonance.
- ▶ We have come up with a way of circumventing the issue of numerical algorithms falling off the side of square-root near grazing by using the **VIVID** function.

- ▶ We have shown that the oscillator has a stable period-two solution near grazing because it is near resonance.
- ▶ We have come up with a way of circumventing the issue of numerical algorithms falling off the side of square-root near grazing by using the **VIVID** function.
- We have also theoretically come up with matching asymptotics, unfolding the codimension-two points.

- ▶ We have shown that the oscillator has a stable period-two solution near grazing because it is near resonance.
- ▶ We have come up with a way of circumventing the issue of numerical algorithms falling off the side of square-root near grazing by using the **VIVID** function.
- We have also theoretically come up with matching asymptotics, unfolding the codimension-two points.
- Future: More complete bifurcation diagram, other bifurcation curves.

The End

Thank you! Questions?